New York State Common Core

Module Overview \qquad
Topic A: Concepts of Volume \qquad 5.A. 1

Topic B: Volume and the Operations of Multiplication and Addition \qquad 5.B. 1

Topic C: Area of Rectangular Figures with Fractional Side Lengths \qquad 5.C. 1

Topic D: Drawing, Analysis, and Classification of Two-Dimensional Shapes \qquad 5.D. 1 Module Assessments \qquad 5.S. 1

For video tutorials on many of these problems, please visit http://EMBARC.online

Please let me know if you find any mistakes by emailing me at dhabecker@gmail.com

Name \qquad Date \qquad

1. The following solids are made up of 1-cm cubes. Find the total volume of each figure, and write it in the chart below.
A.

D.

B.

E.

C.

F.

2. Draw the figures on the dot paper with the given number of unit cubes.
a. 3 cubic units
b. 6 cubic units
c. 12 cubic units

3. John built and drew a structure that has a volume of 5 cubic centimeters. His little brother tells him he made a mistake because he only drew 4 cubes. Help John explain to his brother why his drawing is accurate.

$$
\begin{aligned}
& \text { The cube on top is sitting on top of } \\
& \text { the cube that John's brother thought } \\
& \text { was missing. }
\end{aligned}
$$

7. Draw another figure below that represents a structure with a volume of 5 cubic centimeters.

Name \qquad Date \qquad

1. Make the following boxes on centimeter grid paper. Cut and fold each to make 3 open boxes, taping them so they hold their shapes. How many cubes would fill each box? Explain how you found the number.
a.

Number of cubes:

1 layer with 4 cubes.
b.

Number of cubes: $\quad 12$

c.

2 layers with 6 cubes in each layer.

$$
2 \text { layers with } 12 \text { cubes in each layer. }
$$

2. How many centimeter cubes would fit inside each box? Explain your answer using words and diagrams on the box. (The figures are not drawn to scale; the first box is 3 centimeters across and 2 centimeters wide.)
a.

Number of cubes: \qquad
Explanation: There is one layer with
6 cubes in the layer.
b.

Number of cubes: \qquad
Explanation: There are 2 layers. Each layer has 6 cubes. $6 \times 2=12$
c.

Number of cubes: 32 Explanation: There are 4 layers. Each layer has 8 cubes.

$$
8 \times 4=32
$$

3. The box pattern below holds 24 1-cm cubes. Draw two different box patterns that would hold the same number of cubes.

Name \qquad Date \qquad

1. Use the prisms to find the volume.

- The rectangular prisms pictured below were constructed with 1-cm cubes
- Decompose each prism into layers in three different ways, and show your thinking on the blank prisms.
- Complete each table

$\begin{gathered} \text { Number of } \\ \text { Layers } \end{gathered}$		Volume of the Prism
2	12	24
4	6	24
3	8	24 cubicm

Number of Layers	Number of Cubes in Each Layer	Volume of the Prism
5	6	30
cubic cm		
3	0	30
cubic cm		
2	5	30
cubic cm		

2. Stephen and Chelsea want to increase the volume of this prism by 72 cubic centimeters. Chelsea wants to add eight layers and Stephen says they only need to add four layers. Their teacher tells them they are both correct. Explain how this is possible.

Chelsea sees the 9 cubes at the end of the prism as a layer.

$$
9 \times 8=72
$$

Stephen sees the 18 cubes at the top of the prism as a layer.

$$
18 \times 4=72
$$

3. Juliana makes a prism 4 inches across and 4 inches wide, but only 1 inch tall. She then decides to create layers equal to her first one. Fill in the chart below and explain how you know the volume of each new prism.

| Number of
 Layers | Volume |
| :---: | :--- | :---: |
| 3 | 48 in 3 Each layer has 16 cubes, so 3 layers is $3 \times 16 \mathrm{in}^{3}$ |
| 5 | 80 in $^{3} 5$ layers with each layer being $16 \mathrm{in}^{3}$. |
| $5 \times 16 \mathrm{in}^{3}=80 \mathrm{in}^{3}$ | |
| 7 | 112 in $^{3} 1$ layer is $16 \mathrm{in}^{3}$, so $7 \times 16 \mathrm{in}^{3}=112 \mathrm{in}^{3}$ |

4. Imagine the rectangular prism below is 4 meters long, 3 meters tall, and 2 meters wide. Draw horizontal lines to show how the prism could be decomposed into layers that are 1 meter in height.

It has
 layers from left to right.
Each layer contains \qquad cubic units.

The volume of this prism is

Name \qquad Date \qquad

1. Each rectangular prism is built from centimeter cubes. State the dimensions and find the volume.
a.

b.

c.

Length: $\frac{5}{2} \mathrm{~cm}$
Width: $\frac{2}{4} \mathrm{~cm}$
Height: cm
Volume: $40 \mathrm{~cm}^{3}$

Length: 3 cm
Width: 2 cm
Height: $\frac{5}{30} \mathrm{~cm}$
Volume: $30 \mathrm{~cm}^{3}$

Length: $\frac{4}{2} \mathrm{~cm}$
Width: $\frac{2}{4} \mathrm{~cm}$
Height: $\frac{4}{32} \mathrm{~cm}^{3}$

Length: \qquad cm
Width: \qquad cm

Height: \qquad cm
Volume: $72 \mathrm{~cm}^{3}$
$3 \times 2 \times 5$
$6 \times 5=30$

$$
\begin{aligned}
& 5 \times 2 \times 4 \\
& 10 \times 4=40
\end{aligned}
$$

$$
6 \times 5=30
$$

2. Write a multiplication sentence that you could use to calculate the volume for each rectangular prism in Problem 1. Include the units in your sentences.
a. $5 \mathrm{~cm} \times 2 \mathrm{~cm} \times 4 \mathrm{~cm}=40 \mathrm{~cm}_{\text {. }}$.

$$
3 \mathrm{~cm} \times 2 \mathrm{~cm} \times 5 \mathrm{~cm}=30 \mathrm{~cm}^{3}
$$

c. $4 \mathrm{~cm} \times 2 \mathrm{~cm} \times 4 \mathrm{~cm}=32 \mathrm{~cm}^{3}$
d. $8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 3 \mathrm{~cm}=72 \mathrm{~cm}^{3}$
3. Calculate the volume of each rectangular prism. Include the units in your number sentences.
a.

volume 8 in $\times 4$ in $\times 8$ in $=256$ in 3
b.

Volume: \qquad
4. Mrs. Johnson is constructing a box in the shape of a rectangular prism to store clothes for the summer. It has a length of 28 inches, a width of 24 inches, and a height of 30 inches. What is the volume of the box?

$$
\begin{aligned}
V & =l \times w \times h \\
& =28 \mathrm{in} \times 24 \mathrm{in} \times 30 \mathrm{in} \\
& =20,160 \mathrm{in}^{3}
\end{aligned}
$$

5. Calculate the volume of each rectangular prism using the information that is provided.
a. Face area: 56 square meters, height: 4 meters.

$$
\begin{aligned}
V & =\text { (face area) } \times \text { height } \\
& =56 \mathrm{~m}^{2} \times 4 \mathrm{~m}=224 \mathrm{~m}^{3}
\end{aligned}
$$

b. Face area: 169 square inches, height: 14 inches.

$$
\begin{aligned}
V & =(\text { face area }) \times \text { height } \\
& =169 \mathrm{in}^{2} \times 14 \mathrm{in} \\
& =2,366 \mathrm{in}^{3}
\end{aligned}
$$

Name \qquad Date \qquad

1. Johnny filled a container with 30 centimeter cubes. Shade the beaker to show how much water the container will hold. Explain how you know.
Since $1 \mathrm{~cm}^{3}$ of water is equal to 1 mL , 30 centimeter cubes is equal to 30 mL .

2. A beaker contains 250 mL of water. Jack wants to pour the water into a container that will hold the water. Which of the containers pictured below could he use? Explain your choices.

6 cm

$$
V=6 \mathrm{~cm} \times 12 \mathrm{~cm} \times 12 \mathrm{~cm}
$$

$$
=864 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
V & =20 \mathrm{~cm}^{2} \times 12 \mathrm{~cm} \\
& =240 \mathrm{~cm}^{3}
\end{aligned}
$$

Jack could use container A or C.

$$
\begin{aligned}
V & =15 \mathrm{~cm} \times 3 \mathrm{~cm} \times 5 \mathrm{~cm} \\
& =225 \mathrm{~cm}^{3}
\end{aligned}
$$

3. On the back of this paper, describe the details of the activities you did in class today. Include what you learned about cubic centimeters and milliliters. Give an example of a problem you solved with an illustration. Answers will vary.

$$
1 \mathrm{~cm}^{3}=1 \mathrm{~mL}
$$

Date:

\qquad Date \qquad

1. Find the total volume of the figures and record your solution strategy.
a.

Volume:

Solution Strategy:

$$
\begin{aligned}
& \text { Volume of } A=13 \mathrm{in} \times 2 \mathrm{in} \times 2 \mathrm{in}=52 \mathrm{in}^{3} \\
& \text { Volume of } B=2 \mathrm{in} \times 5 \mathrm{in} \times 2 \mathrm{in}=20 \mathrm{in}^{3} \\
& \text { Total }=52 \mathrm{in}^{3}+20 \mathrm{in}^{3}=72 \mathrm{in}^{3}
\end{aligned}
$$

c.

Volume: $72 \mathrm{~mm}^{3}+132 \mathrm{~mm}^{3}+45 \mathrm{~mm}^{3}$
Solution Strategy: $=249 \mathrm{~mm}^{3}$ Solution Strategy:

$$
\begin{aligned}
& V_{E}=3 \mathrm{~mm} \times 4 \mathrm{~mm} \times 6 \mathrm{~mm}=72 \mathrm{~mm}^{3} \\
& V_{F}=11 \mathrm{~mm} \times 3 \mathrm{~mm} \times 4 \mathrm{~mm}=132 \mathrm{~mm}^{3} \\
& V_{G}=3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 5 \mathrm{~mm}=45 \mathrm{~mm}^{3}
\end{aligned}
$$

Find the total volume of solid figures composed of two nonoverlapping rectangular prisms.
1/10/14
$15 m-9 m$ gives the height of I.
2. A planting box (pictured below) is made of two sizes of rectangular prisms. One type of prism measures 3 inches by 6 inches by 14 inches. The other type measures 15 inches by 5 inches by 10 inches. What is total volume of three such boxes?
Left and Right sides: $(3 \operatorname{in} \times 6$ in $\times 14 i n)+(3 \operatorname{in} \times 6 i n \times 14 i n)$
$=504 \mathrm{in}^{3}$
Middle: $15 \mathrm{in} \times 5 \mathrm{in} \times 10 \mathrm{in}$
$=750 \mathrm{in}^{3}$

$$
\begin{array}{r}
750 \mathrm{in}^{3} \\
+\quad 504 \mathrm{in}^{3} \\
\hline 1254 \mathrm{in}^{3}
\end{array}
$$

is volume of one box
$1254 \times 3=3762$

$$
\text { Total volume }=3,762 \mathrm{in}^{3}
$$

3. The combined volume of two identical cubes is 250 cubic centimeters. What is the measure of one cube's edge?

$$
5 \mathrm{~cm} \times 5 \mathrm{~cm} \times 5 \mathrm{~cm}=125 \mathrm{~cm}
$$

The edge of one cube is 5 cm long.
4. A fish tank has a base area of $45 \mathrm{~cm}^{2}$ and is filled with water to a depth of 12 cm . If the height of the tank is 25 cm , how much more water will be needed to fill the tank to the brim?

$$
\begin{aligned}
V_{\text {water }} & =45 \mathrm{~cm}^{2} \times 12 \mathrm{~cm} \\
& =540 \mathrm{~cm}^{3} \\
V_{\text {tank }} & =45 \mathrm{~cm}^{2} \times 25 \mathrm{~cm} \\
& =1,125 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \times 25 \mathrm{~cm}^{3} \\
= & 540 \\
\hline & 585 \mathrm{~cm}^{3}
\end{aligned}
$$

$585 \mathrm{~cm}^{3}$ more water is needed.
5. Three rectangular prisms have a combined volume of 518 cubic feet. Prism A has one-third the volume of Prism B, and Prisms B and C have equal volume. What is the volume of each prism?

$$
\begin{aligned}
& A=74 \mathrm{ft}^{3} \\
& B=74 \times 3=222 \mathrm{ft}^{3} \\
& C=222 \mathrm{ft}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 7 \text { units }=518 \mathrm{ft}^{3} \\
& \div 7 \\
& \text { lunit }=518 \div 7 \\
&=74 \mathrm{ft}^{3}
\end{aligned}
$$

I COMMON CORE

Lesson 6:
Date:

Find the total volume of solid figures composed of two nonoverlapping rectangular prisms. 1/10/14
engage ${ }^{\text {ny }}$

Name \qquad Date \qquad

Wren makes some rectangular display boxes.

1. Wren's first display box is 6 inches long, 9 inches wide, and 4 inches high. What is the volume of the

2. Wren wants to put some artwork into three large display boxes. She knows they all need a volume of 60 cubic inches, but she wants them all to be different. Show three different ways Wren can make these boxes by drawing diagrams and labeling the measurements.
 whole number edge lengths.
Date: $1 / 10 / 14$
3. Wren wants to build a box to organize her scrapbook supplies. She has a stencil set that is 12 inches wide that needs to lay flat in the bottom of the box. The supply box must also be no taller than 2 feet. Name one way she could build a toy box with a volume of 72 cubic inches.

$$
\begin{aligned}
V & =l \times w \times h \\
& =12 \mathrm{in} \times 3 \mathrm{in} \times 2 \mathrm{in} \\
& =72 \mathrm{in}^{3}
\end{aligned}
$$

The box is 12 inches long,
3 inches wide, and
2 inches high.
4. After all of this organizing, Wren decides she also needs more storage for her soccer equipment. Her current storage box measures 1 foot long by 2 feet wide by 2 feet high. She realizes she needs to replace it with a box with 12 cubic feet of storage, so she doubles the width.
a. Will she achieve her goal if she does this? Why or why not?

$$
1 \mathrm{ft} \times \frac{2}{4} \mathrm{ft} \times 2 \mathrm{ft}=8 \mathrm{ft}^{3}
$$

Wren does not reach her goal.
b. If she wants to keep the height the same, what could the other dimensions be for a 12-cubic-foot storage box?

$$
\begin{aligned}
V & =l \times l v \times h & & \text { length }=2 \text { feet } \\
& =2 \mathrm{ft} \times 3 \mathrm{ft} \times 2 \mathrm{ft} & & \text { width }=3 \text { feet } \\
& =12 \mathrm{ft}^{3} & & \text { height }=2 \text { feet }
\end{aligned}
$$

c. If she uses the dimensions in Part (b), what is the area of the new storage box's floor?

The area of the box's floor is $6 \mathrm{ft}^{2}(2 \mathrm{ft} \times 3 \mathrm{ft})$.
d. How has the area of the bottom in her new storage box changed? Explain how you know.

The origins area of the box floor in Part (a) was $2 \mathrm{ft}^{2}(1 \mathrm{ft} \times 2 \mathrm{ft})$ In Part (c) the area of the box floor is $6 \mathrm{ft}^{2}(2 \mathrm{ft} \times 3 \mathrm{ft})$.

COMMON CORE

Lesson 7:
Date:

Solve word problems involving the volume of rectangular prisms with whole number edge lengths. $1 / 10 / 14$
engage ${ }^{n y}$

Name \qquad Date \qquad

1. I have a prism with the dimensions of 6 cm by 12 cm by 15 cm . Calculate the volume of the prism, then give the dimensions of three different prisms that have $\frac{1}{3}$ of the volume.

2. Sunni's bedroom has the dimensions of 11 ft by 10 ft by 10 ft . Her den has the same height, but double the volume. Give two sets of the possible dimensions of the den and the volume of the den.

Bedroom: $11 \mathrm{ft} \times 10 \mathrm{ft} \times 10 \mathrm{ft}=1100 \mathrm{ft}^{3}$
Den: $11 \mathrm{ft} \times \underset{20}{ } \mathrm{ft} \mathrm{ft} \times 10 \mathrm{ft}=2200 \mathrm{ft}^{3}$
Den: $\mathrm{Fft} \times 10 \mathrm{ft} \times 10 \mathrm{ft}=2200 \mathrm{ft}^{3}$
22

Name \qquad Date \qquad

1. Find three rectangular prisms around your house. Describe the item you are measuring (cereal box, tissue box, etc.), then measure each dimension to the nearest whole inch and calculate the volume.
a. Rectangular Prism A

Item:

Height: \qquad inches

Length: \qquad inches

Width: \qquad inches

Volume: \qquad cubic inches
b. Rectangular Prism B

Item:

Height: \qquad inches

Length: \qquad inches

Width: \qquad inches

Volume: \qquad cubic inches
c. Rectangular Prism C

Item:

Height: \qquad inches

Length: \qquad inches

Width: \qquad inches

Volume: \qquad cubic inches

Name \qquad Date \qquad

1. John tiled some rectangles using square unit. Sketch the rectangles if necessary, fill in the missing information, and then confirm the area by multiplying.
a. Rectangle A:

b. Rectangle B:

c. Rectangle C:
$4 u$.

$$
4 \times \frac{3}{4}=\frac{12}{4}=3
$$

Rectangle B is

Rectangle C is

units wide

d. Rectangle D:

$$
2 \times 1 \frac{3}{4}
$$

Rectangle D is

2. Rachel made a mosaic from different color rectangular tiles. Three tiles measured $3 \frac{1}{2}$ inches $\times 3$ inches. Six tiles measured 4 inches $\times 3 \frac{1}{4}$ inches. What is the area of the whole mosaic in square inches?

$$
\begin{aligned}
3 \frac{1}{2} \text { in } \times 3 \text { in } & =(3 \times 3)+\left(\frac{1}{2} \times 3\right) \\
& =9+\frac{3}{2} \\
& =9+1 \frac{1}{2} \\
& =10 \frac{1}{2} \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(3 \times 10 \frac{1}{2} \mathrm{in}^{2}\right)+\left(6 \times 13 \mathrm{in}^{2}\right) \\
= & 30+\frac{3}{2}+78 \\
= & 108+1 \frac{1}{2} \\
= & 109 \frac{1}{2} \mathrm{in}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{4in} \times 3 \frac{1}{4} \text { in } & =(4 \times 3)+\left(4 \times \frac{1}{4}\right) \\
& =12+\frac{4}{4} \\
& =12+1 \\
& =13 \mathrm{in}^{2}
\end{aligned}
$$

3. A garden box has a perimeter of $27 \frac{1}{2}$ feet. If the length is 9 feet, what is the area of the garden box?

$$
\begin{array}{r}
187 \frac{1}{2} \\
-18 \\
\hline 9 \frac{1}{2}
\end{array}
$$

$9 \mathrm{ft} \times 4 \frac{3}{4} \mathrm{ft}$

$$
=(9 \times 4)+\left(9 \times \frac{3}{4}\right) \text { box is } 42 \frac{3}{4} \mathrm{ft}^{2} \text {. }
$$

The area of the

$$
=36+\frac{27}{4}
$$

$$
=36+6 \frac{3}{4}
$$

$$
=42 \frac{3}{4} \mathrm{ft}^{2}
$$

The area of the whole mosaic

$$
\text { is } 109 \frac{1}{2} \mathrm{in}^{2} \text {. }
$$

Name \qquad Date \qquad

1. Kristen tiled the following rectangles using square units. Sketch the rectangles, and find the areas. Then confirm the area by multiplying. Rectangle A has been sketched for you.
a. Rectangle A:

Rectangle B is

$$
=3+\frac{6}{8}+\frac{3}{8}=3 \frac{9}{8}=4 \frac{1}{8}
$$

$2 \frac{1}{2}$ units long $\times \frac{3}{4}$ unit wide

$$
\text { Area }=1 \frac{7}{8} \text { units }^{2} \quad 2 \frac{1}{2} \times \frac{3}{4}
$$

$$
\begin{aligned}
& =\left(2 \times \frac{3}{4}\right)+\left(\frac{1}{2} \times \frac{3}{4}\right) \\
& =\frac{6}{4} \times \frac{2}{2}+\frac{3}{8} \\
& =\frac{12}{8}+\frac{3}{8}=\frac{15}{8}=1 \frac{7}{8}
\end{aligned}
$$

$3 \frac{1}{3}$ units long $\times 2 \frac{1}{2}$ units wide
Area $=\frac{8 \frac{1}{3}}{3 \frac{1}{3} \times 2 \frac{1}{2}}$
$=(2 \times 3)+\left(2 \times \frac{1}{3}\right)+\left(\frac{1}{2} \times 3\right)+\left(\frac{1}{2} \times \frac{1}{3}\right)$
$=6+\frac{2}{3} \times \frac{2}{2}+\frac{3}{2} \times \frac{3}{3}+\frac{1}{6}$
$=6+\frac{4}{6}+\frac{9}{6}+\frac{1}{6}$
$=6 \frac{14}{6}=6+2 \frac{2}{6}=8 \frac{2}{6}=8 \frac{1}{3}$ fraction multiplication.
$1 / 10 / 14$
d. Rectangle D:

Rectangle D is
$3 \frac{1}{2}$ units long $\times 2 \frac{1}{4}$ units wide

$$
\begin{aligned}
& 3 \frac{1}{2} \times 2 \frac{1}{4} \\
= & 6+1+\frac{3}{4} \times \frac{2}{2}+\frac{1}{8} \\
= & 6+1+\frac{6}{8}+\frac{1}{8}=7 \frac{7}{8}
\end{aligned}
$$

2. A square has a perimeter of 25 inches. What is the area of the square?

The square has an area of $39 \frac{1}{16} \mathrm{in}^{3}$.

$$
\begin{aligned}
\text { Area } & =l \times w \\
& =6 \frac{1}{4} \times 6 \frac{1}{4} \\
& =(6 \times 6)+\left(6 \times \frac{1}{4}\right)+\left(\frac{1}{4} \times 6\right)+\left(\frac{1}{4 \times \frac{1}{4}}\right) \\
& =36+\frac{6}{4}+\frac{6}{4}+\frac{1}{16} \\
& =36+\frac{12}{4}+\frac{1}{16} \\
& =36+3+\frac{1}{16} \\
& =39 \frac{1}{16}
\end{aligned}
$$

Date: $1 / 10 / 14$

Name \qquad Date \qquad

1. Measure each rectangle with your ruler, and label the dimensions. Use the area model to find the area.
a.

d.

b.

c.

e.

2. Find the area. Explain your thinking using the area model.
a. $2 \frac{1}{4} y d \times \frac{1}{4} y d=\frac{2}{4} \times \frac{4}{4}+\frac{1}{16}$
3. Kelly buys a tarp to cover the area under her tent. The tent is 4 feet wide and has an area of 31 square feet. The tarp she bought is $5 \frac{1}{3}$ feet by $5 \frac{3}{4}$ feet. Can the tarp cover the area under Kelly's tent? Draw a model to show your thinking.

$$
\begin{aligned}
& 5 \frac{1}{3} \times 5 \frac{3}{4} \\
= & 25+\frac{5}{3}+\frac{15}{4}+\frac{3}{12} \\
= & 25+1 \frac{2}{3}+3 \frac{3}{4}+\frac{1}{4} \\
= & 30 \frac{2}{3} \mathrm{ft}^{2}
\end{aligned}
$$

The tarp is not
big enough.
4. Shannon and Leslie want to carpet a $16 \frac{1}{2} \mathrm{ft}$ by $16 \frac{1}{2} \mathrm{ft}$ square room. They can't put carpet under an entertainment system that juts out. (See the drawing below.)
a. In square feet, what is the area of the space with no carpet?

b. How many square feet of carpet will Shannon and Leslie need to buy?

$$
\begin{aligned}
& 16 \frac{1}{2} \times 16 \frac{1}{2}=256+8+8+\frac{1}{4} \\
&=272 \frac{1}{4} \mathrm{ft}^{2} \\
& 272 \frac{1}{4}-6 \frac{1}{4}=266 \mathrm{ft}^{2}
\end{aligned}
$$

COMMON CORE

Lesson 12:
Date:

Measure to find the area of rectangles with fractional side lengths. 1/10/14
\qquad Date \qquad

1. Find the area of the following rectangles. Draw an area model if it helps you.

$$
\begin{aligned}
& \text { a. } \begin{array}{l}
\frac{8}{3} \mathrm{~cm} \times \frac{24}{4} \mathrm{~cm} \\
\frac{28 \times 24}{1}=\frac{16}{1} \\
=16 \mathrm{~cm}^{2}
\end{array}=\frac{141}{1}
\end{aligned}
$$

b. $\quad \frac{32}{5} \mathrm{ft} \times 3 \frac{3}{8} \mathrm{ft}$

$$
\begin{aligned}
& =\frac{32}{5} \times \frac{27}{8} \\
& =\frac{432 \times 27}{5 \times 81}=\frac{108}{5} \\
& =21 \frac{3}{5} \mathrm{ft}^{2}
\end{aligned}
$$

c. $5 \frac{4}{6}$ in $\times 4 \frac{3}{5}$ in $=20+3+2 \frac{4}{6}+\frac{12}{30}$
d. $\quad \frac{5}{7} \mathrm{~m} \times 6 \frac{3}{5} \mathrm{~m}$

$$
=25+\frac{20}{30}+\frac{12}{30}
$$

$$
=25+\frac{32}{30}
$$

$$
=25+1 \frac{2}{30}
$$

$$
=26 \frac{2}{30}=26 \frac{1}{15} \mathrm{in}^{2}
$$

$$
\begin{aligned}
& =\frac{5}{7} \times \frac{33}{5} \\
& =\frac{15 \times 33}{7 \times 51}=\frac{33}{7} \\
& =4 \frac{5}{7} \mathrm{~m}^{2}
\end{aligned}
$$

2. Chris is making a table top from some leftover tiles. He has 9 tiles that measure $3 \frac{1}{8}$ inches long and $2 \frac{3}{4}$ inches wide. What is the area he can cover with these tiles?

$$
\begin{aligned}
& 2 \text { in } \frac{3}{4} \text { in } \\
& 3 \text { in } \begin{array}{|l|l|}
\hline 6 \text { in }^{2} & \frac{9}{4}=\frac{1}{4} i^{2} \\
\frac{1}{8} & \frac{2}{8} \text { in }^{2} \frac{3}{32} \text { in }^{2} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 7 \begin{array}{l}
9 \times 8 \frac{19}{32} \\
=(99 \times 8)+(99 \times 19 \\
\left.=72+\frac{17}{32}\right)
\end{array}{ }^{3}=72+5 \frac{11}{32} \\
& =72+\frac{17}{32} \\
& =77 \frac{10}{23}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \frac{1}{8} \times 2 \frac{3}{4} \\
& =6+2 \frac{1}{4}+\frac{2}{8}+\frac{3}{32} \\
& =8+\frac{1}{4}+\frac{1}{4}+\frac{3}{32} \\
& =8+\frac{1}{2 \times 16}+\frac{3}{32}
\end{aligned}
$$

$$
=8 \frac{19}{23} \mathrm{in}^{2}
$$

(for 1 tile)

Date:

Multiply mixed number factors, and relate to the distributive property and area model.
1/10/14

3. A hotel is recarpeting a section of the lobby. Carpet covers the part of the floor as shown below in grey. How many square feet of carpeting will be needed?
Area of large $=31 \frac{7}{8} \mathrm{ft} \times 19 \frac{1}{2} \mathrm{ft}$
rectangle

$$
\begin{aligned}
& =31 \frac{\overline{8}}{8} \mathrm{ft} \times 19 \frac{1}{2}+t \\
& =\frac{255}{8} \times \frac{39}{2}=\frac{9945}{16}=621 \frac{9}{16} \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area }_{A}=11 \frac{3}{4} \times 13 \frac{3}{5} \\
&=\frac{47}{4} \times \frac{68}{5} \\
& \begin{aligned}
\text { Area }_{B} & =12 \times 3 \frac{3}{4} \\
& =(12 \times 3)+\left(12 \times \frac{3}{4}\right) \\
& =36+9 \\
& =45 \mathrm{ft}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =114 \times 105 \\
& =\frac{47}{4} \times \frac{6817}{5}=\frac{799}{5}=159 \frac{4}{5} \mathrm{ft}^{2}
\end{aligned}
$$

$$
31 \frac{7}{8} \mathrm{ft}
$$

$$
\begin{aligned}
\text { Area }_{c} & =17 \times 2 \frac{1}{2} \\
& =(17 \times 2)+\left(17 \times \frac{1}{2}\right) \\
& =34+\frac{17}{2} \\
& =34+8 \frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
& \text { Area }_{A}+\text { Area }_{B}+\text { Area }_{C}= & & \text { Total -Uncarpeted } \\
= & 159 \frac{4}{5}+45+42 \frac{1}{2} & = & 62 \frac{9}{16}-247 \frac{3}{10} \\
= & 246+\frac{4 \times 2}{5 \times 2}+\frac{1}{2} \times 5 & = & 374 \frac{9 \times 5}{16 \times 5}-\frac{3 \times 8}{10 \times 8} \\
= & 246+\frac{8}{10}+\frac{5}{10} & =374 \frac{45}{80}-\frac{24}{80} \\
= & 246+1 \frac{3}{10} & =374 \frac{21}{80} \mathrm{ft}^{2} \\
= & 247 \frac{3}{10} & &
\end{array}
$$

We will need $374 \frac{21}{80} \mathrm{ft}^{2}$ of carpeting.
\qquad Date \qquad

1. Mr. Albano wants to paint menus on the wall of his cafe in chalkboard paint. The grey area below shows where the rectangular menus will be. Each menu will measure 6 feet wide and $7 \frac{1}{2} \mathrm{ft}$ long.

a. How many square feet of menu space will Mr. Albano have?

$$
\begin{aligned}
6 \mathrm{ft} \times 7 \frac{1}{2} \mathrm{ft} & =(6 \times 7)+\left(6 \times \frac{1}{2}\right) \\
& =42+\frac{6}{2} \\
& =42+3 \\
& =45 \mathrm{ft}^{2}
\end{aligned}
$$

b. What is the area of wall space that is not covered by chalkboard paint?

Big beard: $25 \times 13 \frac{2}{3}$

$$
341 \frac{2}{3}-180=161 \frac{2}{3} \mathrm{ft}^{2}
$$

$$
\begin{aligned}
& =(25 \times 13)+\left(25 \times \frac{2}{3}\right) \\
& =325+\frac{50}{3} \\
& =325+16 \frac{2}{3}=341 \frac{2}{3} \mathrm{ft}^{2}
\end{aligned}
$$

$$
\text { Area not covered }=161 \frac{2}{3} \mathrm{ft}^{2}
$$

2. Mr. Albano wants to put tiles in the shape of a dinosaur at the front entrance. He will need to cut some tiles in half to make the figure. If each square tile is $4 \frac{1}{4}$ inches on each side, what will the total area of the
 lengths using visual models and/or equations. engage ${ }^{\text {ny }}$
Date: $1 / 10 / 14$

$$
\begin{aligned}
& \text { figure be? } \\
& 4 \frac{1}{4} \text { in } \times 4 \frac{1}{4} \text { in }=18 \frac{1}{16} \mathrm{in}^{2} \\
& 4, \frac{1}{4} \quad \text { (one tile) }=(17 \times 18)+\left(17 \times \frac{1}{16}\right) \\
& 4 \\
& \begin{array}{|l|l|}
\hline \frac{1}{4} & 1 \\
\hline
\end{array} \\
& 17 \times 18 \frac{1}{16} \\
& \begin{array}{l}
=(17 \times 18)+\left(17 \times \frac{1}{16}\right) \\
=306+\frac{17}{16}
\end{array} \\
& =306+\frac{17}{16} \\
& =306+1 \frac{1}{16} \\
& =307 \frac{1}{16} \mathrm{in}^{2}
\end{aligned}
$$

3. A-Plus Glass is making windows for a new house that is being built. The box shows the list of sizes they must make.

How many square feet of glass will they need?

15 windows $4 \frac{3}{4} \mathrm{ft}$ long and $3 \frac{3}{5} \mathrm{ft}$ wide 7 windows $2 \frac{4}{5} \mathrm{ft}$ wide and $6 \frac{1}{2} \mathrm{ft}$ long

$$
\begin{aligned}
& 4 \frac{3}{4} \times 3 \frac{3}{5}=\frac{19}{2^{4}} \times \frac{189}{5}=\frac{171}{10}=17 \frac{1}{10} \mathrm{ft}^{2} \\
& 15 \times 17 \frac{1}{10}=(15 \times 17)+\left(15 \times \frac{1}{10}\right)=255+\frac{15}{10}=255+1 \frac{5}{10}=256 \frac{1}{2} \mathrm{ft}^{2}
\end{aligned}
$$

$$
2 \frac{4}{5} \times 6 \frac{1}{2}=\frac{74}{5} \times \frac{13}{21}=\frac{91}{5}=18 \frac{1}{5} \mathrm{ft}^{2}
$$

$$
7 \times 18 \frac{1}{5}=(7 \times 18)+\left(7 \times \frac{1}{5}\right)=126+\frac{7}{5}=126+1 \frac{2}{5}=127 \frac{2}{5} \mathrm{ft}^{2}
$$

$$
256 \frac{1}{2 \times 5}+127 \frac{2 \times 2}{5 \times 2}=256 \frac{5}{10}+127 \frac{4}{10}=383 \frac{9}{10} \mathrm{ft}^{2} \text { is needed }
$$

4. Mr. Johnson needs to buy seed for his backyard lawn.
a. If the lawn measures $40 \frac{4}{5} \mathrm{ft}$ by $50 \frac{7}{8} \mathrm{ft}$, how many square feet of seed will he need?

b. One bag of seed will cover 500 square feet if he sets his seed spreader to its lowest setting and 300 square feet if he sets the spreader to its highest setting. How many bags of seed will he need if he uses the highest setting? The lowest setting?
$300 \times 6=1,800$
$300 \times 7=2,100$ At the lowest setting, he would need 7 bags.
$\begin{aligned} & 500 \times 4=2,000 \\ & 500 \times 5=2,500\end{aligned}>$ At the highest setting, he would need 5 bags .
|| COMMON CORE

Lesson 14:
Date:

Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations. $1 / 10 / 14$
engage ${ }^{\text {ny }}$
\qquad Date \qquad

1. The width of a picnic table is 3 times its length. If the length $\frac{5}{6} \mathrm{yd}$ long, what is the area in square feet?

2. A painting company will paint this wall. The homeowner gives them the following dimensions:

Window A is $6 \frac{1}{4} \mathrm{ft} \times 5 \frac{3}{4} \mathrm{ft}$
Window B is $3 \frac{1}{8} \mathrm{ft} \times 4 \mathrm{ft}$
Window C is $9 \frac{1}{2} \mathrm{ft}$ square
Door D is $8 \mathrm{ft} \times 4 \mathrm{ft}$

What is the area of the painted part of the wall?
Wall: $33 \times 52 \frac{1}{2}=(33 \times 52)+\left(33 \times \frac{1}{2}\right)=1716+\frac{33}{2}=1716+16 \frac{1}{2}=1732 \frac{1}{2} \mathrm{ft}^{2}$
Window A: $6 \frac{1}{4} \times 5 \frac{3}{4}=\frac{25}{4} \times \frac{23}{4}=\frac{575}{16}=35 \frac{15}{16 \mathrm{ft}^{2}}$
Window $B: 3 \frac{1}{8} \times 4=$
Window $C: 9 \frac{1}{2} \mathrm{ft}^{2}$
Door D: $8 \times 4=32 \mathrm{ft}^{2}$

$$
=89 \frac{15}{16} \mathrm{ft}^{2}
$$

$$
1732 \frac{1 \times 8}{288}-89 \frac{15}{16}=1732 \frac{8}{16}-89 \frac{15}{16}=1643 \frac{8}{16}-\frac{15}{16}=1642 \frac{9}{16} \mathrm{ft}^{2}
$$

COMMON CORE

Lesson 15:
Date:

Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations. 1/10/14
engage ${ }^{\text {ny }}$
3. A decorative wooden piece is made up of four rectangles as shown to the right. The smallest rectangle measures $4 \frac{1}{2}$ inches by $7 \frac{3}{4}$ inches. If $2 \frac{1}{4}$ inches is added to each dimension as the rectangles get larger, what is the total area of the entire piece?

$$
\begin{aligned}
& A: 4 \frac{1}{2} \times 7 \frac{3}{4}=\frac{9}{2} \times \frac{31}{4}=\frac{279}{8}=34 \frac{7}{8} \mathrm{in}^{2} \\
& B: 6 \frac{3}{4} \times 10=(6 \times 10)+\left(\frac{3}{4} \times 10\right)=60+\frac{30}{4}=60+7 \frac{1}{2}=67 \frac{1}{2} \mathrm{in}^{2} \\
& C: 9 \times 12 \frac{1}{4}=(9 \times 12)+\left(9 \times \frac{1}{4}\right)=108+\frac{9}{4}=108+2 \frac{1}{4}=110 \frac{1}{4} \mathrm{in}^{2} \\
& D: 11 \frac{1}{4} \times 14 \frac{1}{2}=\frac{45}{4} \times \frac{29}{2}=\frac{1305}{8}=163 \frac{1}{8} \mathrm{in}^{2}
\end{aligned}
$$

Total:

$$
\begin{aligned}
34 \frac{7}{8}+67 \frac{1}{2}+110 \frac{1}{4}+163 \frac{1}{8} & =374+\frac{7}{8}+\frac{1}{8}+\frac{1}{2}+\frac{1}{4} \\
& =375 \frac{3}{4} \text { in }^{2}
\end{aligned}
$$

The total area is $375 \frac{3}{4} \mathrm{in}^{2}$.

Lesson 15:

Date:

Name \qquad Date \qquad

1. Use a straightedge and the grid paper to draw:
a. A trapezoid with exactly 2 right angles.
b. A trapezoid with no right angles.

2. Kaplan incorrectly sorted some quadrilaterals into trapezoids and non-trapezoids as pictured below.
a. Circle the shapes that are in the wrong group and tell why they are missorted.

b. Explain what tools would be necessary to use to verify the placement of all the trapezoids. allows us to find parallel lines.
3. Use a straightedge to draw an isosceles trapezoid on the grid paper.

a. Why is this shape called an isosceles trapezoid?

It is an isosceles trapezoid because the two slanted sides are the same length.

Date:

Name \qquad Date \qquad

1. $\angle A$ measures 60°. Extend the rays of $\angle A$ and draw parallelogram $A B C D$ on the grid paper.
a. What are the measures of $\angle B, \angle C$, and $\angle D$?
$\angle A=60^{\circ}$
$\angle B=120^{\circ}$
$\angle C=60^{\circ}$

$\angle D=120^{\circ}$

b. $\angle W X Y=113^{\circ}$. Use what you know about angles in a parallelogram to find the measure of the other angles
\qquad
$\angle Y Z W=$
113°

2. Jack measured some segments in Problem 2. He found that $\overline{W Y}=8 \mathrm{~cm}$ and $\overline{M Z}=3 \mathrm{~cm}$.

Give the lengths of the following segments:

4. Using the properties of the shapes, explain why all parallelograms are trapezoids.

Answers will vary: All parallelograms must have two pairs of parallel lines. Trapezoids must have at least one pair of parallel lines. This means all parallelograms are also trapezoids.
5. Teresa says that because the diagonals of a parallelogram bisect each other, if one diagonal is 4.2 cm , the other diagonal must be half that length. Use words and pictures to explain Teresa's error.
An example to show that Teresa is wrong is a rhombs that is also a square (see image to right).
This is a parallelogram in which the diagonals are the same length, rather than one being half the
 length of the other.
\qquad

1. Use the grid paper to draw.
a. A rhombus with no right angles.

c. A rectangle with not all sides equal.

b. A rhombus with 4 right angles.

d. A rectangle with all sides equal.

2. A rhombus has a perimeter of 217 cm . What is the length of each side of the rhombus?

$$
\begin{aligned}
\text { Perimeter } & =217 \mathrm{~cm} \\
4 \text { sides } & =217 \mathrm{~cm} \\
1 \text { side } & =54 \frac{1}{4} \mathrm{~cm}
\end{aligned}
$$

$$
\begin{gathered}
54 \frac{1}{4} \\
4 \sqrt{217} \\
\frac{-20}{17} \\
\frac{-16}{1}
\end{gathered}
$$

Each side is $54 \frac{1}{4} \mathrm{am}$ long.
3. List the properties that all rhombuses share.

- 4 sides of equal length
- opposite angles are congruent
- opposite sides are parallel

4. List the properties that all rectangles share.

- opposite sides are equal lengths.
- two pairs of parallel sides.
- four right angles

Name \qquad Date \qquad
1.
a. Draw a kite that is not a parallelogram on the grid paper.
b. List all the properties of a kite.

- four sides
- adjacent sides are equal
- diagonals form right angles
c. When can a parallelogram also be a kite?

A parallelogram can also be a kite

when it has 2 pairs of equal adjacent sides. Rhombuses and squares are examples.
2. If rectangles must have right angles, explain how a rhombus could also be called a rectangle.

- A rhombus can also be a rectangle when all four sides are equal and all angles are 90°.

3. Draw a rhombus that is also a rectangle on the grid paper.

I will be a square.

4. Kirkland says that figure $E F G H$ below is a quadrilateral because it has four points in the same plane and four segments with no three endpoints collinear. Explain his error.

This is considered a complex quadrilateral. For the purposes of this module, we will say it is not a quadr. loteral.

complex
 squares based on those attributes.
Date:

Name \qquad Date \qquad

1. Follow the flow chart and put the name of the figure in the boxes.

2. $S Q R E$ is a square with area $49 \mathrm{~cm}^{2}$ and $R M=4.95 \mathrm{~cm}$. Find the measurements using what you know about the properties of squares.

$7 \mathrm{~cm} A=49 \mathrm{~cm}^{2}$
7 cm

$$
\begin{aligned}
A & =l \cdot w \\
& =7.7 \\
& =49 \mathrm{~cm}^{2}
\end{aligned}
$$

Since the area is $49 \mathrm{~cm}^{2}$, each side length is 7 cm . This means the perimeter is $7 \mathrm{~cm}+7 \mathrm{~cm}+7 \mathrm{~cm}+7 \mathrm{~cm}$ which is 28 cm .

Name \qquad Date \qquad

1. Answer the questions by checking the box.
a. Is a square a rectangle?
b. Is a rectangle a kite?
c. Is a rectangle a parallelogram?
d. Is a square a trapezoid?
e. Is a parallelogram a trapezoid?
f. Is a trapezoid a parallelogram?
g. Is a kite a parallelogram?

Sometimes Always

h. For each statement that you answered with "sometimes," draw and label an example that justifies your answer.

When the rectangle is a square

When the trapezoid has 2 pairs of
parallel sides.
2. Use what you know about quadrilaterals to answer each question below

When the kite is also a square.
a. Explain when a trapezoid is not a parallelogram. Sketch an example.

When the trapezoid has only 1 pair of parallel sides.

b. Explain when a kite is not a parallelogram. Sketch an example.

> When adjacent sides are congruent, but opposite sides are not parallel.

